Age-related shifts in gut microbiota contribute to cognitive decline in aged rats

与年龄有关的肠道微生物群变化导致老年大鼠认知能力下降

阅读:5
作者:Yanli Li, Li Ning, Yiru Yin, Rui Wang, Zhiyong Zhang, Lijun Hao, Bin Wang, Xin Zhao, Xiaorong Yang, Litian Yin, Shufen Wu, Dawei Guo, Ce Zhang

Abstract

Cognitive function declines during the aging process, meanwhile, gut microbiota of the elderly changed significantly. Although previous studies have reported the effect of gut microbiota on learning and memory, all the reports were based on various artificial interventions to change the gut microbiota without involvement of aging biological characteristics. Here, we investigated the effect of aged gut microbiota on cognitive function by using fecal microbiota transplantation (FMT) from aged to young rats. Results showed that FMT impaired cognitive behavior in young recipient rats; decreased the regional homogeneity in medial prefrontal cortex and hippocampus; changed synaptic structures and decreased dendritic spines; reduced expression of brain-derived neurotrophic factor (BDNF), N-methyl-D-aspartate receptor NR1 subunit, and synaptophysin; increased expression of advanced glycation end products (AGEs) and receptor for AGEs (RAGE). All these behavioral, brain structural and functional alterations induced by FMT reflected cognitive decline. In addition, FMT increased levels of pro-inflammatory cytokines and oxidative stress in young rats, indicating that inflammation and oxidative stress may underlie gut-related cognitive decline in aging. This study provides direct evidence for the contribution of gut microbiota to the cognitive decline during normal aging and suggests that restoring microbiota homeostasis in the elderly may improve cognitive function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。