Local Delivery of Nimustine Hydrochloride against Brain Tumors: Basic Characterization Study

盐酸尼莫司汀局部给药治疗脑肿瘤:基本特性研究

阅读:5
作者:Xiaodong Shao, Ryuta Saito, Aya Sato, Saori Okuno, Daisuke Saigusa, Ritsumi Saito, Akira Uruno, Yoshinari Osada, Masayuki Kanamori, Teiji Tominaga

Abstract

Convection-enhanced delivery (CED) delivers agents directly into tumors and the surrounding parenchyma. Although a promising concept, clinical applications are often hampered by insufficient treatment efficacy. Toward developing an effective CED-based strategy for delivering drugs with proven clinical efficacy, we performed a basic characterization study to explore the locally delivered characteristics of the water soluble nitrosourea nimustine hydrochloride (ACNU). First, ACNU distribution after CED in rodent brain was studied using mass spectrometry imaging. Clearance of 14C-labeled ACNU after CED in striatum was also studied. ACNU was robustly distributed in rodent brain similar to the distribution of the hydrophilic dye Evans blue after CED, and locally delivered ACNU was observed for over 24 h at the delivery site. Subsequently, to investigate the potential of ACNU to induce an immunostimulative microenvironment, Fas and transforming growth factor-β1 (TGF-β1) was assessed in vitro. We found that ACNU significantly inhibited TGF-β1 secretion and reduced Fas expression. Further, after CED of ACNU in 9L-derived intracranial tumors, the infiltration of CD4/CD8 lymphocytes in tumors was evaluated by immunofluorescence.CED of ACNU in xenografted intracranial tumors induced tumor infiltration of CD4/CD8 lymphocytes. ACNU has a robust distribution in rodent brain by CED, and delayed clearance of the drug was observed at the local infusion site. Further, local delivery of ACNU affects the tumor microenvironment and induces immune cell migration in tumor. These characteristics make ACNU a promising agent for CED.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。