ChaC glutathione specific γ-glutamylcyclotransferase 1 inhibits cell viability and increases the sensitivity of prostate cancer cells to docetaxel by inducing endoplasmic reticulum stress and ferroptosis

ChaC 谷胱甘肽特异性 γ-谷氨酰环化转移酶 1 通过诱导内质网应激和铁死亡抑制细胞活力并增加前列腺癌细胞对多西他赛的敏感性

阅读:5
作者:Saifei He, Miao Zhang, Ying Ye, Juhua Zhuang, Xing Ma, Yanan Song, Wei Xia

Abstract

The present study aimed to determine the effects and mechanism of ChaC glutathione specific γ-glutamylcyclotransferase 1 (CHAC1) on cell viability and the sensitivity of prostate cancer cells to docetaxel. Compared with non-tumor human prostate epithelial RWPE-1 cells, the mRNA and protein levels of CHAC1 significantly decreased in two prostate cancer cell lines, DU145 and 22RV1, as measured by quantitative polymerase chain reaction and western blot analysis (P<0.05). The cell viability and glutathione (GSH) levels were significantly inhibited in prostate cancer cells following overexpression of CHAC1 (P<0.01), while they were significantly increased in DU145 cells transfected with CHAC1 siRNA (P<0.05), but not in 22RV1 cells (P>0.05). The expression levels of several endoplasmic reticulum (ER) stress-related factors were then measured by western blot analysis. Following transfection with plasmid overexpressing CHAC1, ER markers, BIP and CHOP levels, were significantly upregulated (P<0.01), while GSH co-treatment decreased this upregulation. In addition, CHAC1 protein levels were significantly upregulated in cells treated with a ferroptosis activator (P<0.05). A liperflo reagent was then used to determine intracellular lipid peroxide levels. The intracellular lipid peroxides levels were significantly increased following CHAC1-overexpression (P<0.05), while GPX4 protein levels were significantly decreased (P<0.01). The cell viability was significantly inhibited (P<0.001) even with 1 nM docetaxel (DTX) and a plasmid overexpressing CHAC1, while the effect of inhibition was not significant at 1 nM of DTX alone (P>0.05). This inhibition was also eliminated following the addition of a ferroptosis inhibitor. In summary, CHAC1 may inhibit cell viability and increase the sensitivity of prostate cancer cells to DTX. The cellular mechanism may involve the induction of ER stress and ferroptosis. The results of the present study identified a potentially novel therapeutic target for prostate cancer, which may be useful in patients with castration-resistant prostate cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。