Metabolites of intestinal microflora upregulate microRNA-200c-3p expression level to suppress airway epithelial inflammation via the IL6ST/JNK/STAT3 signaling pathway

肠道菌群代谢物通过IL6ST/JNK/STAT3信号通路上调microRNA-200c-3p表达水平抑制气道上皮炎症

阅读:6
作者:Linliang Hong, Huanhuan Huang, Bin Wu

Abstract

Intestinal microfloras are involved in various types of cancer; however, there is a limited amount of research into the involvement of metabolites of intestinal microflora (MIM) in asthmatic airway epithelial cells (AECs). The present study was designed to reveal the functions and mechanisms of MIM in the asthmatic inflammation of AECs. House dust mite (HDM)-induced asthma cell models were established and treated with mouse MIM. A MTT assay was used to investigate AEC viability, while reverse transcription-quantitative PCR and western blot analysis were used to measure the expression levels of miR-200c-3p, IL6ST, JNK and STAT3 in asthmatic AECs. ELISA was used to measure the concentration of IL-5 and IL-6. Furthermore, the targeting relationship between microRNA(miR)-200c-3p and IL6ST was investigated using a luciferase reporter gene assay. Compared with normal human bronchial epithelial cells, HDM-induced AECs had lower expression level of miR-200c-3p, higher mRNA and protein expression levels of IL6ST and an increase in IL-5 and IL-6 concentration. Both MIM and miR-200c-3p mimics suppressed the secretion of IL-5 and L-6 and promoted the proliferation of HDM-induced AECs. MIM could also upregulate miR-200c-3p and downregulate IL6ST and proteins in the JNK/STAT3 pathway. IL6ST was found to be a downstream target of miR-200c-3p. Inhibition of miR-200c-3p reversed the suppression of asthmatic inflammation by MIM. In summary, MIM upregulated miR-200c-3p expression level to reduce the protein and mRNA expression levels of IL6ST and suppress its downstream JNK/STAT3 signaling pathway, therefore inhibiting the asthmatic inflammation of AECs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。