Urothelial Oxidative Stress and ERK Activation Mediate HMGB1-Induced Bladder Pain

尿路上皮氧化应激和 ERK 激活介导 HMGB1 诱发的膀胱疼痛

阅读:5
作者:Shaojing Ye, Dlovan F D Mahmood, Fei Ma, Lin Leng, Richard Bucala, Pedro L Vera

Abstract

Activation of intravesical protease activated receptors-4 (PAR4) results in bladder pain through the release of urothelial macrophage migration inhibitory factor (MIF) and high mobility group box-1 (HMGB1). We aimed to identify HMGB1 downstream signaling events at the bladder that mediate HMGB1-induced bladder pain in MIF-deficient mice to exclude any MIF-related effects. We studied whether oxidative stress and ERK activation are involved by examining bladder tissue in mice treated with intravesical disulfide HMGB1 for 1 h and analyzed with Western blot and immunohistochemistry. HMGB1 intravesical treatment increased urothelium 4HNE and phospho-ERK1/2 staining, suggesting that HMGB1 increased urothelial oxidative stress and ERK activation. Furthermore, we examined the functional roles of these events. We evaluated lower abdominal mechanical thresholds (an index of bladder pain) before and 24 h after intravesical PAR4 or disulfide HMGB1. Intravesical pre-treatments (10 min prior) included: N-acetylcysteine amide (NACA, reactive oxygen species scavenger) and FR180204 (FR, selective ERK1/2 inhibitor). Awake micturition parameters (voided volume; frequency) were assessed at 24 h after treatment. Bladders were collected for histology at the end of the experiment. Pre-treatment with NACA or FR significantly prevented HMGB1-induced bladder pain. No significant effects were noted on micturition volume, frequency, inflammation, or edema. Thus, HMGB1 activates downstream urothelial oxidative stress production and ERK1/2 activation to mediate bladder pain. Further dissection of HMGB1 downstream signaling pathway may lead to novel potential therapeutic strategies to treat bladder pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。