Functional and genetic studies of isolated cells from parathyroid tumors reveal the complex pathogenesis of parathyroid neoplasia

甲状旁腺肿瘤分离细胞的功能和遗传研究揭示了甲状旁腺肿瘤的复杂发病机制

阅读:6
作者:Yuhong Shi, Joyce Hogue, Darshana Dixit, James Koh, John A Olson Jr

Abstract

Parathyroid adenomas (PAs) causing primary hyperparathyroidism (PHPT) are histologically heterogeneous yet have been historically viewed as largely monotypic entities arising from clonal expansion of a single transformed progenitor. Using flow cytometric analysis of resected adenomatous parathyroid glands, we have isolated and characterized chief cells, oxyphil cells, and tumor-infiltrating lymphocytes. The parathyroid chief and oxyphil cells produce parathyroid hormone (PTH), express the calcium-sensing receptor (CASR), and mobilize intracellular calcium in response to CASR activation. Parathyroid tumor infiltrating lymphocytes are T cells by immunophenotyping. Under normocalcemic conditions, oxyphil cells produce ∼50% more PTH than do chief cells, yet display significantly greater PTH suppression and calcium flux response to elevated calcium. In contrast, CASR expression and localization are equivalent in the respective parathyroid cell populations. Analysis of tumor clonality using X-linked inactivation assays in a patient-matched series of intact tumors, preparatively isolated oxyphil and chief cells, and laser-captured microdissected PA specimens demonstrate polyclonality in 5 of 14 cases. These data demonstrate the presence of functionally distinct oxyphil and chief cells within parathyroid primary adenomas and provide evidence that primary PA can arise by both clonal and polyclonal mechanisms. The clonal differences, biochemical activity, and relative abundance of these parathyroid adenoma subpopulations likely reflect distinct mechanisms of disease in PHPT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。