sRAGE Inhibits the Mucus Hypersecretion in a Mouse Model with Neutrophilic Asthma

sRAGE 抑制中性粒细胞哮喘小鼠模型中的粘液分泌过多

阅读:6
作者:Xiaobo Zhang, Jun Xie, Hongmei Sun, Qin Wei, Guangmin Nong

Background

Neutrophilic asthma (NA) may result in irreversible airflow limitations. Soluble advanced glycosylation receptor (sRAGE) has been shown to be associated with neutrophilic airway inflammation. However, the association between sRAGE and mucus hypersecretion in NA remains unknown. This study aims to assess the function of sRAGE on mucus hypersecretion.

Conclusions

These results suggest that sRAGE may be a potential target for the treatment of mucus hypersecretion in NA.

Methods

A NA mouse model was established and treated with adeno-associated virus 9 (AAV9)-sRAGE and inhibitors. Collagen deposition and goblet cell hyperplasia in the lungs were evaluated by periodic acid-Schiff (PAS) and Masson staining. sRAGE and mucin levels in bronchoalveolar lavage fluid were measured by ELISA. Pathway molecule expression levels were determined by RT-qPCR and western blotting.

Results

The results showed that the NA mouse model exhibited airway mucus hypersecretion. Mice can be effectively transfected by AAV9-sRAGE via tail-vein injection and intranasal drip. AAV9-sRAGE increased the sRAGE levels but it inhibited the collagen deposition, the PAS score, as well as the expression of MUC5AC and MUC5B. Inhibitors of high-mobility group protein 1 (HMGB1), receptor for advanced glycation end product (RAGE) and phosphatidylinositol 3-kinase (PI3K) suppressed the MUC5AC levels in NA mice as well as in cultured HMGB1-induced human bronchial epithelial cells. Furthermore, the phospho- extracellular signal-regulated kinase (ERK) protein in NA was increased while the sRAGE intervention inhibited this elevation. Conclusions: These results suggest that sRAGE may be a potential target for the treatment of mucus hypersecretion in NA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。