SETDB1 Inhibits p53-Mediated Apoptosis and Is Required for Formation of Pancreatic Ductal Adenocarcinomas in Mice

SETDB1 抑制 p53 介导的细胞凋亡并且是小鼠胰腺导管腺癌形成所必需的

阅读:4
作者:Satoshi Ogawa, Akihisa Fukuda, Yoshihide Matsumoto, Yuta Hanyu, Makoto Sono, Yuichi Fukunaga, Tomonori Masuda, Osamu Araki, Munemasa Nagao, Takaaki Yoshikawa, Norihiro Goto, Yukiko Hiramatsu, Motoyuki Tsuda, Takahisa Maruno, Yuki Nakanishi, Mohammed S Hussein, Tatsuaki Tsuruyama, Kyoichi Takaori, Sh

Aims

SETDB1, a histone methyltransferase that trimethylates histone H3 on lysine 9, promotes development of several tumor types. We investigated whether SETDB1 contributes to development of pancreatic ductal adenocarcinoma (PDAC).

Background & aims

SETDB1, a histone methyltransferase that trimethylates histone H3 on lysine 9, promotes development of several tumor types. We investigated whether SETDB1 contributes to development of pancreatic ductal adenocarcinoma (PDAC).

Conclusions

We found that the histone methyltransferase SETDB1 is required for development of PDACs, induced by activated KRAS, in mice. SETDB1 inhibits apoptosis by regulating expression of p53. SETDB1 might be a therapeutic target for PDACs that retain p53 function.

Methods

We performed studies with Ptf1aCre; KrasG12D; Setdb1f/f, Ptf1aCre; KrasG12D; Trp53f/+; Setdb1f/f, and Ptf1aCre; KrasG12D; Trp53f/f; Setdb1f/f mice to investigate the effects of disruption of Setdb1 in mice with activated KRAS-induced pancreatic tumorigenesis, with heterozygous or homozygous disruption of Trp53. We performed microarray analyses of whole-pancreas tissues from Ptf1aCre; KrasG12D; Setdb1f/f, and Ptf1aCre; KrasG12D mice and compared their gene expression patterns. Chromatin immunoprecipitation assays were performed using acinar cells isolated from pancreata with and without disruption of Setdb1. We used human PDAC cells for SETDB1 knockdown and inhibitor experiments.

Results

Loss of SETDB1 from pancreas accelerated formation of premalignant lesions in mice with pancreata that express activated KRAS. Microarray analysis revealed up-regulated expression of genes in the apoptotic pathway and genes regulated by p53 in SETDB1-deficient pancreata. Deletion of Setdb1 from pancreas prevented formation of PDACs, concomitant with increased apoptosis and up-regulated expression of Trp53 in mice heterozygous for disruption of Trp53. In contrast, pancreata of mice with homozygous disruption of Trp53 had no increased apoptosis, and PDACs developed. Chromatin immunoprecipitation revealed that SETDB1 bound to the Trp53 promoter to regulate its expression. Expression of an inactivated form of SETDB1 in human PDAC cells with wild-type TP53 resulted in TP53-induced apoptosis. Conclusions: We found that the histone methyltransferase SETDB1 is required for development of PDACs, induced by activated KRAS, in mice. SETDB1 inhibits apoptosis by regulating expression of p53. SETDB1 might be a therapeutic target for PDACs that retain p53 function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。