Amantadine disrupts lysosomal gene expression: A hypothesis for COVID19 treatment

金刚烷胺破坏溶酶体基因表达:COVID19 治疗的一个假设

阅读:15
作者:Sandra P Smieszek, Bart P Przychodzen, Mihael H Polymeropoulos

Abstract

SARS-coronavirus 2 is the causal agent of the COVID-19 outbreak. SARS-Cov-2 entry into a cell is dependent upon binding of the viral spike (S) protein to cellular receptor and on cleavage of the spike protein by the host cell proteases such as Cathepsin L and Cathepsin B. CTSL/B are crucial elements of lysosomal pathway and both enzymes are almost exclusively located in the lysosomes. CTSL disruption offers potential for CoVID-19 therapies. The mechanisms of disruption include: decreasing expression of CTSL, direct inhibition of CTSL activity and affecting the conditions of CTSL environment (increase pH in the lysosomes). We have conducted a high throughput drug screen gene expression analysis to identify compounds that would downregulate the expression of CTSL/CTSB. One of the top significant results shown to downregulate the expression of the CTSL gene is amantadine (10uM). Amantadine was approved by the US Food and Drug Administration in 1968 as a prophylactic agent for influenza and later for Parkinson's disease. It is available as a generic drug. Amantadine in addition to downregulating CTSL appears to further disrupt lysosomal pathway, hence, interfering with the capacity of the virus to replicate. It acts as a lysosomotropic agent altering the CTSL functional environment. We hypothesize that amantadine could decrease the viral load in SARS-CoV-2 positive patients and as such it may serve as a potent therapeutic decreasing the replication and infectivity of the virus likely leading to better clinical outcomes. Clinical studies will be needed to examine the therapeutic utility of amantadine in COVID-19 infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。