Pyruvate Kinase M2 Protects Heart from Pressure Overload-Induced Heart Failure by Phosphorylating RAC1

丙酮酸激酶 M2 通过磷酸化 RAC1 保护心脏免受压力超负荷引起的心力衰竭

阅读:7
作者:Le Ni, Bowen Lin, Lingjie Hu, Ruoyu Zhang, Fengmei Fu, Meiting Shen, Jian Yang, Dan Shi

Abstract

Background Heart failure, caused by sustained pressure overload, remains a major public health problem. PKM (pyruvate kinase M) acts as a rate-limiting enzyme of glycolysis. PKM2 (pyruvate kinase M2), an alternative splicing product of PKM, plays complex roles in various biological processes and diseases. However, the role of PKM2 in the development of heart failure remains unknown. Methods and Results Cardiomyocyte-specific Pkm2 knockout mice were generated by crossing the floxed Pkm2 mice with α-MHC (myosin heavy chain)-Cre transgenic mice, and cardiac specific Pkm2 overexpression mice were established by injecting adeno-associated virus serotype 9 system. The results showed that cardiomyocyte-specific Pkm2 deletion resulted in significant deterioration of cardiac functions under pressure overload, whereas Pkm2 overexpression mitigated transverse aortic constriction-induced cardiac hypertrophy and improved heart functions. Mechanistically, we demonstrated that PKM2 acted as a protein kinase rather than a pyruvate kinase, which inhibited the activation of RAC1 (rho family, small GTP binding protein)-MAPK (mitogen-activated protein kinase) signaling pathway by phosphorylating RAC1 in the progress of heart failure. In addition, blockade of RAC1 through NSC23766, a specific RAC1 inhibitor, attenuated pathological cardiac remodeling in Pkm2 deficiency mice subjected to transverse aortic constriction. Conclusions This study revealed that PKM2 attenuated overload-induced pathological cardiac hypertrophy and heart failure, which provides an attractive target for the prevention and treatment of cardiomyopathies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。