Chronic intermittent hypobaric hypoxia improves iron metabolism disorders via the IL-6/JAK2/STAT3 and Epo/STAT5/ERFE signaling pathways in metabolic syndrome rats

慢性间歇性低压缺氧通过IL-6/JAK2/STAT3和Epo/STAT5/ERFE信号通路改善代谢综合征大鼠铁代谢紊乱

阅读:8
作者:Fang Cui, Jie Sun, Haichao Mi, Bo Li, Longmei Tang, Ruotong Wang, Yutao Du, Bingyan Guo, Yongjun Li, Min Shi

Aim

Our previous study demonstrated that chronic intermittent hypobaric hypoxia (CIHH) improved iron metabolism disorder in obese rats through the downregulation of hepcidin. This study aimed to observe the molecular mechanism of CIHH in improving iron metabolism disorders, especially by Janus kinase/signal transducer and activation of the transcription (JAK/STAT) signaling pathway in metabolic syndrome (MS) rats.

Conclusions

CIHH improved iron metabolism disorders, possibly by inhibiting IL-6/JAK2/STAT3 and activating Epo/STAT5/ERFE signaling pathway, thus downregulating hepcidin in MS rats.

Methods

Six-week-old male Sprague-Dawley rats were randomly divided into four groups: CON, CIHH (subjected to hypobaric hypoxia simulating 5000-m altitude for 28 days, 6 h daily), MS (induced by high fat diet and fructose water), and MS+CIHH. The serum levels of glucose, lipid metabolism, iron metabolism, interleukin-6 (IL-6), erythropoietin (Epo) and hepcidin were measured. The protein expressions of JAK2, STAT3, STAT5, bone morphogenetic protein 6 (BMP6), small mothers against decapentaplegic 1 (SMAD1) and hepcidin were examined. The mRNA expressions of erythroferrone (ERFE) and hepcidin were analyzed.

Results

The MS rats displayed obesity, hyperglycemia, hyperlipidemia, iron metabolism disorder, increased IL-6 and hepcidin serum levels, upregulation of JAK2/STAT3 signaling pathway, decreased Epo serum levels, downregulation of STAT5/ERFE signaling pathway in spleen, upregulation of BMP/SMAD signaling pathway in liver, and increased hepcidin mRNA and protein expression compared to CON rats. All the aforementioned abnormalities in MS rats were ameliorated in MS + CIHH rats. Conclusions: CIHH improved iron metabolism disorders, possibly by inhibiting IL-6/JAK2/STAT3 and activating Epo/STAT5/ERFE signaling pathway, thus downregulating hepcidin in MS rats.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。