Drug-Repositioning Screens Identify Triamterene as a Selective Drug for the Treatment of DNA Mismatch Repair Deficient Cells

药物重新定位筛选确定氨苯蝶啶是治疗 DNA 错配修复缺陷细胞的选择性药物

阅读:6
作者:Delphine Guillotin, Philip Austin #, Rumena Begum #, Marta O Freitas, Ashirwad Merve, Tim Brend, Susan Short, Silvia Marino, Sarah A Martin

Conclusions

Conclusively, our data reveal a new drug repurposing and novel therapeutic strategy that has potential for the treatment of MMR deficiency in a range of different tumor types and could significantly improve patient survival. Clin Cancer Res; 23(11); 2880-90. ©2016 AACR.

Purpose

The DNA mismatch repair (MMR) pathway is required for the maintenance of genome stability. Unsurprisingly, mutations in MMR genes occur in a wide range of different cancers. Studies thus far have largely focused on specific tumor types or MMR mutations; however, it is becoming increasingly clear that a therapy targeting MMR deficiency in general would be clinically very beneficial.Experimental Design: Based on a drug-repositioning approach, we screened a large panel of cell lines with various MMR deficiencies from a range of different tumor types with a compound drug library of previously approved drugs. We have identified the potassium-sparing diuretic drug triamterene, as a novel sensitizing agent in MMR-deficient tumor cells, in vitro and in vivoResults: The selective tumor cell cytotoxicity of triamterene occurs through its antifolate activity and depends on the activity of the folate synthesis enzyme thymidylate synthase. Triamterene leads to a thymidylate synthase-dependent differential increase in reactive oxygen species in MMR-deficient cells, ultimately resulting in an increase in DNA double-strand breaks.Conclusions: Conclusively, our data reveal a new drug repurposing and novel therapeutic strategy that has potential for the treatment of MMR deficiency in a range of different tumor types and could significantly improve patient survival. Clin Cancer Res; 23(11); 2880-90. ©2016 AACR.

Results

The selective tumor cell cytotoxicity of triamterene occurs through its antifolate activity and depends on the activity of the folate synthesis enzyme thymidylate synthase. Triamterene leads to a thymidylate synthase-dependent differential increase in reactive oxygen species in MMR-deficient cells, ultimately resulting in an increase in DNA double-strand breaks.Conclusions: Conclusively, our data reveal a new drug repurposing and novel therapeutic strategy that has potential for the treatment of MMR deficiency in a range of different tumor types and could significantly improve patient survival. Clin Cancer Res; 23(11); 2880-90. ©2016 AACR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。