The pathogenesis linked to coenzyme Q10 insufficiency in iPSC-derived neurons from patients with multiple-system atrophy

多系统萎缩患者 iPSC 衍生神经元中辅酶 Q10 不足与发病机制相关

阅读:11
作者:Fumiko Kusunoki Nakamoto, Satoshi Okamoto, Jun Mitsui, Takefumi Sone, Mitsuru Ishikawa, Yorihiro Yamamoto, Yumi Kanegae, Yuhki Nakatake, Kent Imaizumi, Hiroyuki Ishiura, Shoji Tsuji, Hideyuki Okano

Abstract

Multiple-system atrophy (MSA) is a neurodegenerative disease characterized by autonomic failure with various combinations of parkinsonism, cerebellar ataxia, and pyramidal dysfunction. We previously reported that functionally impaired variants of COQ2, which encodes an essential enzyme in the biosynthetic pathway of coenzyme Q10, are associated with MSA. Here, we report functional deficiencies in mitochondrial respiration and the antioxidative system in induced pluripotent stem cell (iPSC)-derived neurons from an MSA patient with compound heterozygous COQ2 mutations. The functional deficiencies were rescued by site-specific CRISPR/Cas9-mediated gene corrections. We also report an increase in apoptosis of iPSC-derived neurons from MSA patients. Coenzyme Q10 reduced apoptosis of neurons from the MSA patient with compound heterozygous COQ2 mutations. Our results reveal that cellular dysfunctions attributable to decreased coenzyme Q10 levels are related to neuronal death in MSA, particularly in patients with COQ2 variants, and may contribute to the development of therapy using coenzyme Q10 supplementation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。