Evaluation of visible diffuse reflectance spectroscopy in liver tissue: validation of tissue saturations using extracorporeal circulation

肝组织中可见漫反射光谱的评估:使用体外循环验证组织饱和度

阅读:4
作者:Stylianos Voulgarelis, Faraneh Fathi, Astrid G Stucke, Kevin D Daley, Joohyun Kim, Michael A Zimmerman, Johnny C Hong, Nicholas Starkey, Kenneth P Allen, Bing Yu

Aim

The current study was designed to determine the utility of visible diffuse reflectance spectroscopy (vis-DRS) for measuring liver tissue saturation in vivo. Approach: A custom-built vis-DRS probe was calibrated using phantoms with hemoglobin (Hb) and polystyrene microspheres. Ex vivo (extracorporeal circulation) and in vivo protocols were used in a swine model (n = 15) with validation via blood gas analysis.

Conclusions

We show that vis-DRS allows for real-time measurement of liver tissue saturation, an indicator for liver perfusion and oxygen delivery.

Results

In vivo absorption and scattering measured by vis-DRS with and without biliverdin correction correlated closely between analyses. Lin's concordance correlation coefficients are 0.991 for μa and 0.959 for μs ' . Hb measured by blood test and vis-DRS with (R2 = 0.81) and without (R2 = 0.85) biliverdin correction were compared. Vis-DRS data obtained from the ex vivo protocol plotted against the PO2 derived from blood gas analysis showed a good fit for a Hill coefficient of 1.67 and P50 = 34 mmHg (R2 = 0.81). A conversion formula was developed to account for the systematic deviation, which resulted in a goodness-of-fit R2 = 0.76 with the expected oxygen dissociation curve. Conclusions: We show that vis-DRS allows for real-time measurement of liver tissue saturation, an indicator for liver perfusion and oxygen delivery.

Significance

Real-time information about oxygen delivery to the hepatic graft is important to direct care and diagnose vascular compromise in the immediate post-transplant period. Aim: The current study was designed to determine the utility of visible diffuse reflectance spectroscopy (vis-DRS) for measuring liver tissue saturation in vivo. Approach: A custom-built vis-DRS probe was calibrated using phantoms with hemoglobin (Hb) and polystyrene microspheres. Ex vivo (extracorporeal circulation) and in vivo protocols were used in a swine model (n = 15) with validation via blood gas analysis. Results: In vivo absorption and scattering measured by vis-DRS with and without biliverdin correction correlated closely between analyses. Lin's concordance correlation coefficients are 0.991 for μa and 0.959 for μs ' . Hb measured by blood test and vis-DRS with (R2 = 0.81) and without (R2 = 0.85) biliverdin correction were compared. Vis-DRS data obtained from the ex vivo protocol plotted against the PO2 derived from blood gas analysis showed a good fit for a Hill coefficient of 1.67 and P50 = 34 mmHg (R2 = 0.81). A conversion formula was developed to account for the systematic deviation, which resulted in a goodness-of-fit R2 = 0.76 with the expected oxygen dissociation curve. Conclusions: We show that vis-DRS allows for real-time measurement of liver tissue saturation, an indicator for liver perfusion and oxygen delivery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。