Smartphone-based pathogen diagnosis in urinary sepsis patients

基于智能手机的泌尿系统脓毒症患者病原体诊断

阅读:11
作者:Lucien Barnes, Douglas M Heithoff, Scott P Mahan, Gary N Fox, Andrea Zambrano, Jane Choe, Lynn N Fitzgibbons, Jamey D Marth, Jeffrey C Fried, H Tom Soh, Michael J Mahan

Background

There is an urgent need for rapid, sensitive, and affordable diagnostics for microbial infections at the point-of-care. Although a number of innovative systems have been reported that transform mobile phones into potential diagnostic tools, the translational challenge to clinical diagnostics remains a significant hurdle to overcome.

Methods

A smartphone-based real-time loop-mediated isothermal amplification (smaRT-LAMP) system was developed for pathogen ID in urinary sepsis patients. The free, custom-built mobile phone app allows the phone to serve as a stand-alone device for quantitative diagnostics, allowing the determination of genome copy-number of bacterial pathogens in real time. Findings: A head-to-head comparative bacterial analysis of urine from sepsis patients revealed that the performance of smaRT-LAMP matched that of clinical diagnostics at the admitting hospital in a fraction of the time (~1 h vs. 18-28 h). Among patients with bacteremic complications of their urinary sepsis, pathogen ID from the urine matched that from the blood - potentially allowing pathogen diagnosis shortly after hospital admission. Additionally, smaRT-LAMP did not exhibit false positives in sepsis patients with clinically negative urine cultures. Interpretation: The smaRT-LAMP system is effective against diverse Gram-negative and -positive pathogens and biological specimens, costs less than $100 US to fabricate (in addition to the smartphone), and is configurable for the simultaneous detection of multiple pathogens. SmaRT-LAMP thus offers the potential to deliver rapid diagnosis and treatment of urinary tract infections and urinary sepsis with a simple test that can be performed at low cost at the point-of-care. FUND: National Institutes of Health, Chan-Zuckerberg Biohub, Bill and Melinda Gates Foundation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。