Efficacy of (S)-Lacosamide in preclinical models of cephalic pain

(S)-拉科酰胺在临床前头痛模型中的疗效

阅读:7
作者:Aubin Moutal, Nathan Eyde, Edwin Telemi, Ki Duk Park, Jennifer Y Xie, David W Dodick, Frank Porreca, Rajesh Khanna

Abstract

Migraine is one of the world's most common neurological disorders. Current acute migraine treatments have sub-optimal efficacy and new therapeutic options are needed. Approaches targeting calcitonin gene related peptide (CGRP) signaling are clinically effective but small molecule antagonists have not been advanced due to toxicity. In this study, we explored the axonal growth/specification collapsin response mediator protein 2 (CRMP2) as a novel "druggable" target for inhibiting CGRP release and for potential relevance for treatment of migraine pain. CRMP2 has been demonstrated to regulate N-type voltage gated Ca2+ channel (CaV2.2) activity and Ca2+-dependent CGRP release in sensory neurons. The co-expression of CRMP2 with CaV2.2 and CGRP in trigeminal ganglia (TG) sensory neurons suggested the possibility of a novel approach to regulate CGRP release in the trigeminal system. Screening protocols surprisingly revealed that (S)-Lacosamide ((S)-LCM), an inactive analog of the clinically-approved small molecule anti-epileptic drug (R)-Lacosamide (Vimpat®), inhibited CRMP2 phosphorylation by cyclin dependent kinase 5 (Cdk5) in rat TG slices and decreased depolarization-evoked Ca2+ influx in TG cells in culture. (S)-LCM significantly blocked capsaicin-evoked CGRP release from dural nerve terminals in the rat an ex vivo cranial cup preparation. Additionally, cephalic and extracephalic cutaneous allodynia (CA) induced in rats by activation of dural nociceptors with a cocktail of inflammatory mediators, was inhibited by oral administration of (S)-LCM. The confirmation of CRMP2 as an upstream mediator of CGRP release together with the brain penetrance of this molecule suggest (S)-LCM as a potential therapy for acute migraine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。