Novel Yttria-Stabilized Zirconium Oxide and Lithium Disilicate Coatings on Titanium Alloy Substrate for Implant Abutments and Biomedical Application

用于种植体基台和生物医学应用的钛合金基体上的新型氧化钇稳定氧化锆和二硅酸锂涂层

阅读:7
作者:Julius Maminskas, Jurgis Pilipavicius, Edvinas Staisiunas, Gytis Baranovas, Milda Alksne, Povilas Daugela, Gintaras Juodzbalys

Abstract

This study aimed to create novel bioceramic coatings on a titanium alloy and evaluate their surface properties in comparison with conventional prosthetic materials. The highly polished titanium alloy Ti6Al4V (Ti) was used as a substrate for yttria-stabilized zirconium oxide (3YSZ) and lithium disilicate (LS2) coatings. They were generated using sol-gel strategies. In comparison, highly polished surfaces of Ti, yttria-stabilized zirconium oxide (ZrO2), polyether ether ketone (PEEK) composite, and poly(methyl methacrylate) (PMMA) were utilized. Novel coatings were characterized by an X-ray diffractometer (XRD) and scanning electron microscope (SEM). The roughness by atomic force microscope (AFM), water contact angle (WCA), and surface free energy (SFE) were determined. Additionally, biocompatibility and human gingival fibroblast (HGF) adhesion processes (using a confocal laser scanning microscope (CLSM)) were observed. The deposition of 3YSZ and LS2 coatings changed the physicochemical properties of the Ti. Both coatings were biocompatible, while Ti-3YSZ demonstrated the most significant cell area of 2630 μm2 (p ≤ 0.05) and the significantly highest, 66.75 ± 4.91, focal adhesions (FAs) per cell after 24 h (p ≤ 0.05). By contrast, PEEK and PMMA demonstrated the highest roughness and WCA and the lowest results for cellular response. Thus, Ti-3YSZ and Ti-LS2 surfaces might be promising for biomedical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。