G-Quadruplex-Forming DNA Aptamers Inhibit the DNA-Binding Function of HupB and Mycobacterium tuberculosis Entry into Host Cells

G-四链体形成的 DNA 适体抑制 HupB 的 DNA 结合功能和结核分枝杆菌进入宿主细胞

阅读:7
作者:Priya Kalra, Subodh Kumar Mishra, Surinder Kaur, Amit Kumar, Hanumanthappa Krishna Prasad, Tarun Kumar Sharma, Jaya Sivaswami Tyagi

Abstract

The entry and survival of Mycobacterium tuberculosis (Mtb) within host cells is orchestrated partly by an essential histone-like protein HupB (Rv2986c). Despite being an essential drug target, the lack of structural information has impeded the development of inhibitors targeting the indispensable and multifunctional C-terminal domain (CTD) of HupB. To bypass the requirement for structural information in the classical drug discovery route, we generated a panel of DNA aptamers against HupB protein through systemic evolution of ligands by exponential (SELEX) enrichment. Two G-quadruplex-forming high-affinity aptamers (HupB-4T and HupB-13T) were identified, each of which bound two distinct sites on full-length HupB, with an estimated KD of ∼1.72 μM and ∼0.17 μM, respectively, for the high-affinity sites. While HupB-4T robustly inhibited DNA-binding activity of HupB in vitro, both the aptamers recognized surface-located HupB and significantly blocked Mtb entry into THP-1 monocytic cells (p < 0.0001). In summary, DNA aptamers generated in this study block DNA-binding activity of HupB, inhibit virulent Mtb infection in host cells, and demonstrate aptamers to be inhibitors of HupB functions. This study also illustrates the utility of SELEX in developing inhibitors against essential targets for whom structural information is not available.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。