High-intensity treadmill running impairs cognitive behavior and hippocampal synaptic plasticity of rats via activation of inflammatory response

高强度跑步机跑步通过激活炎症反应损害大鼠的认知行为和海马突触可塑性

阅读:5
作者:Li-Na Sun, Xiao-Long Li, Fei Wang, Jun Zhang, Dan-Dan Wang, Li Yuan, Mei-Na Wu, Zhao-Jun Wang, Jin-Shun Qi

Abstract

Although appropriate exercise is beneficial for enhancing brain functions, high-intensity exercise (HIE)-induced cognitive dysfunction is causing more and more concerns nowadays. In the present study, we observed the effects of high-intensity treadmill running on the spatial learning of the adult Sprague Dawley male rats in Y-maze (n = 16 per group), and investigated its possible electrophysiological and molecular mechanisms by examining in vivo hippocampal long-term potentiation (LTP), central inflammatory responses, and JNK/p38/ERK signal pathway. The Y-maze active avoidance test showed that high-intensity treadmill running impaired spatial learning ability of rats, with increased error times and prolonged training time in recognizing safety condition. Associated with the cognitive dysfunction, the induction and maintenance of hippocampal LTP were also impaired by the HIE. Furthermore, accompanied by elevated levels of inflammatory factors IL-1β, TNF-α, and iNOS, overactivation of microglia and astrocytes was also found in the CA1 region of hippocampus in the excessive exercise group, indicating an inflammatory response induced by HIE. In addition, Western blot assay showed that the phosphorylation of JNK/p38/ERK proteins was enhanced in the exercise group. These results suggest that exercise stress-induced neuronal inflammatory responses in the hippocampus are associated with HIE-induced cognitive deficits, which may be involved in the upregulation of the JNK/p38/ERK pathway. © 2016 Wiley Periodicals, Inc.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。