NAD(P)-dependent steroid dehydrogenase-like is involved in breast cancer cell growth and metastasis

NAD(P)依赖性类固醇脱氢酶样参与乳腺癌细胞生长和转移

阅读:5
作者:So-Hyun Yoon, Hoe Suk Kim, Ryong Nam Kim, So-Youn Jung, Bok Sil Hong, Eun Ji Kang, Han-Byoel Lee, Hyeong-Gon Moon, Dong-Young Noh, Wonshik Han

Background

The cholesterol biosynthesis pathway is typically upregulated in breast cancer. The role of NAD(P)-dependent steroid dehydrogenase-like (NSDHL) gene, which is involved in cholesterol biosynthesis, in breast cancer remains unknown. This study aimed to uncover the role of NSDHL in the growth and metastasis of breast cancer.

Conclusions

NSDHL might have a role in promoting breast cancer progression. The usage of NSDHL as a therapeutic target in breast cancer needs to be clarified in further studies.

Methods

After NSDHL knockdown by transfection of short interfering RNA into human breast cancer cell lines (MCF-7, MDA-MB-231 and BT-20) and human breast epithelial cell line (MCF10A), cell proliferation assay, cell cycle analysis, three-dimensional cell culture, clonogenic assay, transwell migration and invasion assays, and wound healing assay were performed. Erlotinib was used as the target drug for epidermal growth factor receptor. Immunodeficient mice (NOD.Cg-Prkdcscid Il2rgtm1wjl /SzJ) were used as orthotropic breast tumor models by injecting them with NSDHL-knockdown MDA-MB-231 cells using lentivirus-carrying NSDHL short hairpin RNA. Clinical data from 3951 breast cancer patients in Gene Expression Omnibus databases were used to investigate the potential prognostic role of NSDHL by survival analysis.

Results

NSDHL knockdown in BT-20, and MDA-MB-231 resulted in a significant decrease in their viability, colony formation, migration, and invasion abilities (p < 0.05). Total cholesterol levels were observed to be significantly decreased in NSDHL-knockdown BT-20 and MDA-MB-231 (p < 0.0001). NSDHL knockdown significantly increased the rate of erlotinib-induced cell death, especially in MDA-MB-231 (p = 0.01). NSDHL knockdown led to significantly decreased tumor growth and lung metastasis in the MDA-MB-231 xenograft model (p < 0.01). Clinically, high NSDHL expression in tumors of patients with breast cancer was associated with significantly reduced recurrence-free survival (p < 0.0001). Conclusions: NSDHL might have a role in promoting breast cancer progression. The usage of NSDHL as a therapeutic target in breast cancer needs to be clarified in further studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。