Extracellular vesicles derived from bone marrow mesenchymal stem cells alleviate neuroinflammation after diabetic intracerebral hemorrhage via the miR-183-5p/PDCD4/NLRP3 pathway

骨髓间充质干细胞来源的细胞外囊泡通过 miR-183-5p/PDCD4/NLRP3 通路缓解糖尿病脑出血后的神经炎症

阅读:6
作者:H Ding, Y Jia, H Lv, W Chang, F Liu, D Wang

Conclusion

BMSC-EVs carried miR-183-5p into db/db-ICH rat brain tissues and repressed the NLRP3 pathway by targeting PDCD4, thus alleviating neuroinflammation after diabetic ICH.

Methods

BMSC-EVs were isolated and identified. The rat model of db/db-ICH was established and the model rats were administered with EVs. miR-183-5p expression in brain tissues of db/db-ICH rats was detected. The brain injury of db/db-ICH rats was evaluated by measuring neurobehavioral score, brain water content and inflammatory factors. BV2 cells were cultured in vitro to establish high-glucose (HG)-Hemin-BV2 cell model. The levels of reactive oxygen species (ROS) and inflammatory factors in BV2 cells were measured, and BV2 cell viability and apoptosis were assessed. The targeting relationship between miR-183-5p and PDCD4 was predicted and verified. The activation of PDCD4/NLRP3 pathway in rat brain tissues and BV2 cells was detected.

Results

miR-183-5p expression was reduced in db/db-ICH rats brain tissues. BMSC-EVs ameliorated cranial nerve function, decreased brain water content and repressed inflammatory response by carrying miR-183-5p. BMSC-EVs mitigated HG-Hemin-BV2 cell injury, reduced ROS level and suppressed inflammatory response. miR-183-5p targeted PDCD4. PDCD4 promoted BV2 cell inflammation by activating the NLRP3 pathway. BMSC-EVs inhibited HG-Hemin-BV2 cell inflammation through the miR-183-5p/PDCD4/NLRP3 pathway, and inhibition of miR-183-5p reversed the protective effect of EVs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。