Extracellular superoxide dismutase ameliorates skeletal muscle abnormalities, cachexia, and exercise intolerance in mice with congestive heart failure

细胞外超氧化物歧化酶改善充血性心力衰竭小鼠的骨骼肌异常、恶病质和运动不耐受

阅读:5
作者:Mitsuharu Okutsu, Jarrod A Call, Vitor A Lira, Mei Zhang, Jean A Donet, Brent A French, Kyle S Martin, Shayn M Peirce-Cottler, Christopher M Rembold, Brian H Annex, Zhen Yan

Background

Congestive heart failure (CHF) is a leading cause of morbidity and mortality, and oxidative stress has been implicated in the pathogenesis of cachexia (muscle wasting) and the hallmark symptom, exercise intolerance. We have previously shown that a nitric oxide-dependent antioxidant defense renders oxidative skeletal muscle resistant to catabolic wasting. Here, we aimed to identify and determine the functional role of nitric oxide-inducible antioxidant enzyme(s) in protection against cardiac cachexia and exercise intolerance in CHF.

Conclusions

EcSOD plays an important antioxidant defense function in skeletal muscle against cardiac cachexia and exercise intolerance in CHF.

Results

We demonstrated that systemic administration of endogenous nitric oxide donor S-nitrosoglutathione in mice blocked the reduction of extracellular superoxide dismutase (EcSOD) protein expression, as well as the induction of MAFbx/Atrogin-1 mRNA expression and muscle atrophy induced by glucocorticoid. We further showed that endogenous EcSOD, expressed primarily by type IId/x and IIa myofibers and enriched at endothelial cells, is induced by exercise training. Muscle-specific overexpression of EcSOD by somatic gene transfer or transgenesis (muscle creatine kinase [MCK]-EcSOD) in mice significantly attenuated muscle atrophy. Importantly, when crossbred into a mouse genetic model of CHF (α-myosin heavy chain-calsequestrin), MCK-EcSOD transgenic mice had significant attenuation of cachexia with preserved whole body muscle strength and endurance capacity in the absence of reduced HF. Enhanced EcSOD expression significantly ameliorated CHF-induced oxidative stress, MAFbx/Atrogin-1 mRNA expression, loss of mitochondria, and vascular rarefaction in skeletal muscle. Conclusions: EcSOD plays an important antioxidant defense function in skeletal muscle against cardiac cachexia and exercise intolerance in CHF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。