Conclusion
Present data suggest that HERPUD1 may be an effective target for biotechnological and pharmacological strategies to be developed to treat breast cancer.
Methods
The effects of HERPUD1 silencing on epithelial-mesenchymal transition (EMT), angiogenesis, and cell cycle proteins were analyzed by immunoblotting studies. To test the role of HERPUD1 on tumorigenic features, WST-1-based cell proliferation assay, wound-healing assay, 2D colony formation assay, and Boyden-Chamber invasion assay were performed in human breast cancer cell line MCF-7. The statistical significance of the differences between the groups was determined by Student's t-test.
Results
Our results displayed that suppressing HERPUD1 expression reduced the cell cycle-related protein levels, including cyclin A2, cyclin B1, and cyclin E1 in MCF-7 cells. Also, silencing of HERPUD1 remarkably decreased expression levels of EMT-related N-cadherin and angiogenesis marker vascular endothelial growth factor A. Moreover, we determined that cell proliferation, migration, invasion, and colony formation of MCF-7 cells were significantly limited by silencing of HERPUD1.
