An Optogenetics-based Approach to Regulate Colonic Contractions by Modulating the Activity of the Interstitial Cells of Cajal in Mice

基于光遗传学的方法通过调节小鼠 Cajal 间质细胞的活性来调节结肠收缩

阅读:6
作者:Song Zhao, Weidong Tong

Aims

The interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal (GI) tract. We examined whether the activity of ICC could be stimulated to control colonic contractions. An optogenetics-based mouse model in which the light-sensitive protein channelrhodopsin-2 (ChR2) was expressed was used to accomplish cell specific, direct stimulation of ICC.

Background/aims

The interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal (GI) tract. We examined whether the activity of ICC could be stimulated to control colonic contractions. An optogenetics-based mouse model in which the light-sensitive protein channelrhodopsin-2 (ChR2) was expressed was used to accomplish cell specific, direct stimulation of ICC.

Conclusions

Our study demonstrates a potentially feasible approach to stimulate the activity of ICC by optogenetics. The colonic motor patterns of muscle strips, especially LFHA contractions, can be regulated by 470 nm light via ChR2, which is expressed in ICC.

Methods

An inducible site-specific Cre-loxP recombination system was used to generate KitCreERT2/+;ROSAChR2(H134R)/tdTomato/+ mice in which ChR2(H134R), a variant of ChR2, was genetically expressed in ICC after tamoxifen administration. Genotyping and immunofluorescence analysis were performed to confirm gene fusion and expression. Isometric force recordings were performed to measure changes in contractions in the colonic muscle strips.

Results

ChR2 was specifically expressed in Kit-labeled ICC. The isometric force recordings showed that the contractions of the colonic muscle strips changed under 470 nm blue light. Light stimulation evoked premature low-frequency and high amplitude (LFHA) contractions and enhanced the frequency of the LFHA contractions. The light-evoked contractions were blocked by T16Ainh-A01, an antagonist of anoctamin 1 channels that are expressed selectively in ICC in colonic muscles. Conclusions: Our study demonstrates a potentially feasible approach to stimulate the activity of ICC by optogenetics. The colonic motor patterns of muscle strips, especially LFHA contractions, can be regulated by 470 nm light via ChR2, which is expressed in ICC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。