A quick and reliable image-based AI algorithm for evaluating cellular senescence of gastric organoids

一种快速可靠的基于图像的 AI 算法,用于评估胃类器官的细胞衰老

阅读:7
作者:Ruixin Yang #, Yutong Du #, Wingyan Kwan, Ranlin Yan, Qimeng Shi, Lu Zang, Zhenggang Zhu, Jianming Zhang, Chen Li, Yingyan Yu

Conclusions

Given the lack of indicators for evaluating organoid growth status, we established a reliable approach for integrated analysis of phenotypic parameters that uses an artificial intelligence algorithm to indicate organoid vitality. This method enables precise evaluation of organoid status in biomedical studies and monitoring of living biobanks.

Methods

Herein, we constructed 55 gastric organoids from 35 individuals, serially passaged the organoids, and captured microscopic images for phenotypic evaluation. Senescence-associated β-galactosidase (SA-β-Gal), cell diameter in suspension, and gene expression reflecting cell cycle regulation were examined. The YOLOv3 object detection algorithm integrated with a convolutional block attention module (CBAM) was used to evaluate organoid vitality.

Objective

Organoids are a powerful tool with broad application prospects in biomedicine. Notably, they provide alternatives to animal models for testing potential drugs before clinical trials. However, the number of passages for which organoids maintain cellular vitality ex vivo remains unclear.

Results

SA-β-Gal staining intensity; single-cell diameter; and expression of p15, p16, p21, CCNA2, CCNE2, and LMNB1 reflected the progression of aging in organoids during passaging. The CBAM-YOLOv3 algorithm precisely evaluated aging organoids on the basis of organoid average diameter, organoid number, and number × diameter, and the findings positively correlated with SA-β-Gal staining and single-cell diameter. Organoids derived from normal gastric mucosa had limited passaging ability (passages 1-5), before aging, whereas tumor organoids showed unlimited passaging potential for more than 45 passages (511 days) without showing clear senescence. Conclusions: Given the lack of indicators for evaluating organoid growth status, we established a reliable approach for integrated analysis of phenotypic parameters that uses an artificial intelligence algorithm to indicate organoid vitality. This method enables precise evaluation of organoid status in biomedical studies and monitoring of living biobanks.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。