Resveratrol promotes endothelial cell wound healing under laminar shear stress through an estrogen receptor-α-dependent pathway

白藜芦醇通过雌激素受体α依赖途径促进层流剪切应力下的内皮细胞伤口愈合

阅读:6
作者:Arif Yurdagul Jr, James J Kleinedler, Marshall C McInnis, Alok R Khandelwal, Allyson L Spence, A Wayne Orr, Tammy R Dugas

Abstract

Restenosis is an adverse outcome of angioplasty, characterized by vascular smooth muscle cell (VSMC) hyperplasia. However, therapies targeting VSMC proliferation delay re-endothelialization, increasing the risk of thrombosis. Resveratrol (RESV) inhibits restenosis and promotes re-endothelialization after arterial injury, but in vitro studies assessing RESV-mediated effects on endothelial cell growth contradict these findings. We thus hypothesized that fluid shear stress, mimicking physiological blood flow, would recapitulate RESV-dependent endothelial cell wound healing. Since RESV is an estrogen receptor (ER) agonist, we tested whether RESV promotes re-endothelialization through an ER-α-dependent mechanism. Mice fed a high-fat diet or a diet supplemented with RESV were subjected to carotid artery injury. At 7 days after injury, RESV significantly accelerated re-endothelialization compared with vehicle. In vitro wound healing assays demonstrated that RESV exhibits cell-type selectivity, inhibiting VSMC, but not endothelial cell growth. Under laminar shear stress (LSS), RESV dramatically enhanced endothelial cell wound healing and increased both the activation of extracellular signal-regulated kinase (ERK) and endothelial cell proliferation. Under LSS, small interfering RNA against ER-α, but not endothelial nitric oxide synthase, abolished RESV-induced ERK activation, endothelial cell proliferation, and wound healing. Thus these studies suggest that the EC phenotype induced by LSS better models the prohealing effects of RESV and that RESV and LSS interact to promote an ER-α-dependent mitogenic effect in endothelial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。