MnO2 Nanoflower Integrated Optoelectronic Biointerfaces for Photostimulation of Neurons

MnO2 纳米花集成光电生物界面用于神经元光刺激

阅读:6
作者:Lokman Kaya, Onuralp Karatum, Rıdvan Balamur, Hümeyra Nur Kaleli, Asım Önal, Sharadrao Anandrao Vanalakar, Murat Hasanreisoğlu, Sedat Nizamoglu

Abstract

Optoelectronic biointerfaces have gained significant interest for wireless and electrical control of neurons. Three-dimentional (3D) pseudocapacitive nanomaterials with large surface areas and interconnected porous structures have great potential for optoelectronic biointerfaces that can fulfill the requirement of high electrode-electrolyte capacitance to effectively transduce light into stimulating ionic currents. In this study, the integration of 3D manganese dioxide (MnO2 ) nanoflowers into flexible optoelectronic biointerfaces for safe and efficient photostimulation of neurons is demonstrated. MnO2 nanoflowers are grown via chemical bath deposition on the return electrode, which has a MnO2 seed layer deposited via cyclic voltammetry. They facilitate a high interfacial capacitance (larger than 10 mF cm-2 ) and photogenerated charge density (over 20 µC cm-2 ) under low light intensity (1 mW mm-2 ). MnO2 nanoflowers induce safe capacitive currents with reversible Faradaic reactions and do not cause any toxicity on hippocampal neurons in vitro, making them a promising material for biointerfacing with electrogenic cells. Patch-clamp electrophysiology is recorded in the whole-cell configuration of hippocampal neurons, and the optoelectronic biointerfaces trigger repetitive and rapid firing of action potentials in response to light pulse trains. This study points out the potential of electrochemically-deposited 3D pseudocapacitive nanomaterials as a robust building block for optoelectronic control of neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。