A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference

针对多个 microRNA 的单个抗 microRNA 反义寡脱氧核糖核苷酸 (AMO) 为 microRNA 干扰提供了一种改进的方法

阅读:5
作者:Yanjie Lu, Jiening Xiao, Huixian Lin, Yunlong Bai, Xiaobin Luo, Zhiguo Wang, Baofeng Yang

Abstract

Anti-miRNA antisense inhibitors (AMOs) have demonstrated their utility in miRNA research and potential in miRNA therapy. Here we report a modified AMO approach in which multiple antisense units are engineered into a single unit that is able to simultaneously silence multiple-target miRNAs, the multiple-target AMO or MTg-AMO. We validated the technique with two separate MTg-AMOs: anti-miR-21/anti-miR-155/anti-miR-17-5p and anti-miR-1/anti-miR-133. We first verified the ability of the MTg-AMOs to antagonize the repressive actions of their target miRNAs using luciferase reporter activity assays and to specifically knock down the levels of their target miRNAs using real-time RT-PCR methods. We then used the MTg-AMO approach to identify several tumor suppressors-TGFBI, APC and BCL2L11 as the target genes for oncogenic miR-21, miR-155 and miR-17-5p, respectively, and two cardiac ion channel genes HCN2 (encoding a subunit of cardiac pacemaker channel) and CACNA1C (encoding the alpha-subunit of cardiac L-type Ca(2+) channel) for the muscle-specific miR-1 and miR-133. We further demonstrated that the MTg-AMO targeting miR-21, miR-155 and miR-17-5p produced a greater inhibitory effect on cancer cell growth, compared with the regular single-target AMOs. Moreover, while using the regular single-target AMOs excluded HCN2 as a target gene for either miR-1 or miR-133, the MTg-AMO approach is able to reveal HCN2 as the target for both miR-1 and miR-133. Our findings suggest the MTg-AMO as an improved approach for miRNA target finding and for studying function of miRNAs. This approach may find its broad application for exploring biological processes involving multiple miRNAs and multiple genes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。