Phosphatidylserine and FVa regulate FXa structure

磷脂酰丝氨酸和 FVa 调节 FXa 结构

阅读:6
作者:Kinshuk Raj Srivasatava, Rinku Majumder, William H Kane, Mary Ann Quinn-Allen, Barry R Lentz

Abstract

Human coagulation FXa (Factor Xa) plays a key role in blood coagulation by activating prothrombin to thrombin on 'stimulated' platelet membranes in the presence of its cofactor FVa (Factor Va). PS (phosphatidylserine) exposure on activated platelet membranes promotes prothrombin activation by FXa by allosterically regulating FXa. To identify the structural basis of this allosteric regulation, we used FRET to monitor changes in FXa length in response to (i) soluble short-chain PS [C6PS (dicaproylphosphatidylserine)], (ii) PS membranes, and (iii) FVa in the presence of C6PS and membranes. We incorporated a FRET pair with donor (fluorescein) at the active site and acceptor (Alexa Fluor® 555) at the FXa N-terminus near the membrane. The results demonstrated that FXa structure changes upon binding of C6PS to two sites: a regulatory site at the N-terminus [identified previously as involving the Gla (γ-carboxyglutamic acid) and EGFN (N-terminus of epidermal growth factor) domains] and a presumptive protein-recognition site in the catalytic domain. Binding of C6PS to the regulatory site increased the interprobe distance by ~3 Å (1 Å=0.1 nm), whereas saturation of both sites increased the distance by a further ~6.4 Å. FXa binding to a membrane produced a smaller increase in length (~1.4 Å), indicating that FXa has a somewhat different structure on a membrane from when bound to C6PS in solution. However, when both FVa2 (a FVa glycoform) and either C6PS- or PS-containing membranes were bound to FXa, the overall change in length was comparable (~5.6-5.8 Å), indicating that C6PS- and PS-containing membranes in conjunction with FVa2 have comparable regulatory effects on FXa. We conclude that the similar functional regulation of FXa by C6PS or membranes in conjunction with FVa2 correlates with similar structural regulation. The results demonstrate the usefulness of FRET in analysing structure-function relationships in FXa and in the FXa·FVa2 complex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。