HADC regulates the diabetic vascular endothelial dysfunction by targetting MnSOD

HADC 通过靶向 MnSOD 调节糖尿病血管内皮功能障碍

阅读:4
作者:Qian Hou, Ke Hu, Xiaofeng Liu, Jiao Quan, Zehao Liu

Abstract

Vascular dysfunction is a common result of diabetes in humans. However, the mechanism underlying diabetic vascular dysfunction is not fully understood. Here in the present study, we showed that the histone deacetylase 2 (HDAC2) promoted the endothelial dysfunction induced by diabetes. The expression and activity of HDAC2 were up-regulated in vascular endothelial cells (ECs) from diabetic patients and mice. The expression of HDAC2 was also increased by high glucose stress in isolated human ECs. HDAC2 knockdown repressed the proliferation rate and promoted high glucose-induced apoptosis of ECs, which was associated with the activation of apoptotic pathways (Bcl-2, Caspase 3, and Bax). By contrast, HDAC2 overexpression led to opposing results. Significantly, we observed that HDAC2 regulated the accumulation of reactive oxygen species (ROS) induced by high glucose in ECs, which accounted for the effects of HDAC2 on proliferation and apoptosis because antioxidants, N-acetyl-l-cysteine (NAC) or MnTBAP treatment blocked the effects of HDAC2 on apoptosis of ECs under high glucose condition. Mechanism study revealed that HDAC2 bound to the promoter of MnSOD and repressed the expression of MnSOD by regulating the level of acetylated H3K9 and H3K27, which led to the promotion of oxidative stress and contributed to the function of HDAC2 in ECs under high glucose condition. Altogether, our evidence demonstrated that HDAC2-MnSOD signaling was critical in oxidative stress and proliferation as well as the survival of ECs under high glucose condition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。