Dexmedetomidine protects H9C2 rat cardiomyocytes against hypoxia/reoxygenation injury by regulating the long non-coding RNA colon cancer-associated transcript 1/microRNA-8063/Wnt/β-catenin axis

右美托咪啶通过调控长链非编码RNA结肠癌相关转录本1/microRNA-8063/Wnt/β-catenin轴保护H9C2大鼠心肌细胞免受缺氧/复氧损伤

阅读:6
作者:Chundong Liu, Rui Xu

Abstract

Dexmedetomidine (Dex) protects the heart from ischemia/reperfusion (I/R) injury. The differential expression of long non-coding RNAs (lncRNAs) is associated with myocardial injury, but whether the lncRNA colon cancer-associated transcript 1 (CCAT1) is associated with Dex-mediated myocardial protection remains unclear. In this study, a hypoxia/reoxygenation (H/R) H9C2 model was established to simulate the in vitro characteristics of I/R. CCAT1 and microRNA (miR)-8063 expression levels in H/R H9C2 cells pretreated with Dex were determined via quantitative reverse transcription-polymerase chain reaction. The survival and apoptotic rates of H9C2 cells were determined via cell counting kit-8 and flow cytometry assays. Wnt3a, Wnt5a, and β-catenin protein levels were measured via western blotting. Luciferase and RNA immunoprecipitation assays were used to explore the binding relationship between miR-8063 and CCAT1. Dex pretreatment increased H/R H9C2 cell viability and CCAT1 expression, while decreasing the cell apoptosis and Wnt3a, Wnt5a, and β-catenin protein levels. Knockdown of CCAT1 abolished the protective effects of Dex on H/R H9C2 cells, and the downregulation of miR-8063 expression eliminated the effect of CCAT1 knockdown. These results revealed that CCAT1, a sponge for miR-8063, is involved in Dex-mediated H9C2 cell H/R injury by negatively targeting miR-8063 and inactivating the Wnt/β-catenin pathway. Dex protects H9C2 cells from H/R impairment by regulating the lncRNA CCAT1/miR-8063/Wnt/β-catenin axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。