TRPA1 promotes melanosome phagocytosis in keratinocytes via PAR-2/CYLD axis

TRPA1 通过 PAR-2/CYLD 轴促进角质形成细胞中的黑素体吞噬作用

阅读:5
作者:Yupeng Wang, Zhou Li, Wei Wu, Ying Liu, Yu Xiao, Dongdong Qi, Guangming Zhao, Meijuan Zhou, Hua Wang, Jing Liu, Zhiqi Song

Background

Keratinocytes are recipients of melanosomes. Although the chemical basis of melanogenesis is well documented, the molecular mechanism of melanosome transfer must be elucidated. TRPA1 is a member of the transient receptor potential A subfamily. Previous studies have shown that inhibition of TRPA1 activity reduces melanin synthesis in human epidermal melanocytes; however, the mechanism remains unknown.

Conclusions

Our findings firstly suggest that TRPA1 promotes melanosome transport in keratinocytes and reveal that TRPA1 is a regulator of PAR-2 activation and microtubule stability via the PAR-2/CYLD axis.

Methods

The correlation between TRPA1 expression levels and the ability of keratinocytes to phagocytize melanosomes was examined using melanin silver staining. TRPA1 depleted human epidermal keratinocytes and keratinocyte cell lines HaCaT were established using adenovirus-expressing shRNAs against TRPA1. The effects of TRPA1 on keratinocytes and HaCaT cells were determined using cell-based analyses, including light stimulation, calcium imaging, melanin phagocytosis, immunoblotting, and co-immunoprecipitation assays. The degree of epidermal pigmentation was determined in a guinea pig model.

Objective

This study aimed to investigate the roles and mechanism(s) of action of TRPA1 in keratinocytes.

Results

TRPA1 mediated the phagocytic activity of keratinocytes. TRPA1 knockdown markedly suppressed melanosome transport to keratinocytes. Mechanistically, TRPA1 was required for PAR-2-induced melanosome phagocytosis in keratinocytes. Furthermore, TRPA1 activation indirectly stabilized microtubules by promoting the competitive binding of CYLD and acetylated α-tubulin. In addition, bortezomib (PS-341), a proteasome inhibitor, increased TRPA1 and CYLD expression and promoted phagocytic activity both in vitro and in vivo. Conclusions: Our findings firstly suggest that TRPA1 promotes melanosome transport in keratinocytes and reveal that TRPA1 is a regulator of PAR-2 activation and microtubule stability via the PAR-2/CYLD axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。