SVCT2/SLC23A2 is a sodium-dependent urate transporter: functional properties and practical application

SVCT2/SLC23A2 是一种钠依赖性尿酸转运蛋白:功能特性和实际应用

阅读:4
作者:Yu Toyoda, Hiroshi Miyata, Ryuichiro Shigesawa, Hirotaka Matsuo, Hiroshi Suzuki, Tappei Takada

Abstract

Urate transporters play a pivotal role in urate handling in the human body, but the urate transporters identified to date do not account for all known molecular processes of urate handling, suggesting the presence of latent machineries. We recently showed that a urate transporter SLC2A12 is also a physiologically important exporter of ascorbate (the main form of vitamin C in the body) that would cooperate with an ascorbate importer, sodium-dependent vitamin C transporter 2 (SVCT2). Based on the dual functions of SLC2A12 and cooperativity between SLC2A12 and SVCT2, we hypothesized that SVCT2 might be able to transport urate. To test this proposal, we conducted cell-based analyses using SVCT2-expressing mammalian cells. The results demonstrated that SVCT2 is a novel urate transporter. Vitamin C inhibited SVCT2-mediated urate transport with a half-maximal inhibitory concentration of 36.59 μM, suggesting that the urate transport activity may be sensitive to physiological ascorbate levels in blood. Similar results were obtained for mouse Svct2. Further, using SVCT2 as a sodium-dependent urate importer, we established a cell-based urate efflux assay that will be useful for identification of other novel urate exporters as well as functional characterization of nonsynonymous variants of already-identified urate exporters including ATP-binding cassette transporter G2. While more studies will be needed to elucidate the physiological impact of SVCT2-mediated urate transport, our findings deepen understanding of urate transport machineries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。