Replacement Bisphenols Adversely Affect Mouse Gametogenesis with Consequences for Subsequent Generations

替代双酚对小鼠配子发生产生不利影响,并对后代产生影响

阅读:6
作者:Tegan S Horan, Hannah Pulcastro, Crystal Lawson, Roy Gerona, Spencer Martin, Mary C Gieske, Caroline V Sartain, Patricia A Hunt

Abstract

20 years ago, accidental bisphenol A (BPA) exposure caused a sudden increase in chromosomally abnormal eggs from our control mice [1]. Subsequent rodent studies demonstrated developmental effects of exposure with repercussions on adult health and fertility (e.g., [2-9]; reviewed in [10-17]). Studies in monkeys, humans, fish, and worms suggest BPA effects extend across species (e.g., [18-30]; reviewed in [31-33]). Widespread use has resulted in ubiquitous environmental contamination and human BPA exposure. Consumer concern resulted in "BPA-free" products produced using structurally similar bisphenols that are now detectable environmental and human contaminants (e.g., [34-41]). We report here studies initiated by meiotic changes mirroring our previous BPA experience and implicating exposure to BPS (a common BPA replacement) from damaged polysulfone cages. Like with BPA [1, 2, 5], our data show that exposure to common replacement bisphenols induces germline effects in both sexes that may affect multiple generations. These findings add to growing evidence of the biological risks posed by this class of chemicals. Rapid production of structural variants of BPA and other EDCs circumvents efforts to eliminate dangerous chemicals, exacerbates the regulatory burden of safety assessment, and increases environmental contamination. Our experience suggests that these environmental contaminants pose a risk not only to reproductive health but also to the integrity of the research environment. EDCs, like endogenous hormones, can affect diverse processes. The sensitivity of the germline allows us to detect effects that, although not immediately apparent in other systems, may induce variability that undermines experimental reproducibility and impedes scientific advancement.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。