Cadmium-Free Kesterite Thin-Film Solar Cells with High Efficiency Approaching 12

无镉黄锌矿薄膜太阳能电池效率接近 12

阅读:7
作者:Nafees Ahmad, Yunhai Zhao, Fan Ye, Jun Zhao, Shuo Chen, Zhuanghao Zheng, Ping Fan, Chang Yan, Yingfen Li, Zhenghua Su, Xianghua Zhang, Guangxing Liang

Abstract

Cadmium sulfide (CdS) buffer layer is commonly used in Kesterite Cu2 ZnSn(S,Se)4 (CZTSSe) thin film solar cells. However, the toxicity of Cadmium (Cd) and perilous waste, which is generated during the deposition process (chemical bath deposition), and the narrow bandgap (≈2.4 eV) of CdS restrict its large-scale future application. Herein, the atomic layer deposition (ALD) method is proposed to deposit zinc-tin-oxide (ZTO) as a buffer layer in Ag-doped CZTSSe solar cells. It is found that the ZTO buffer layer improves the band alignment at the Ag-CZTSSe/ZTO heterojunction interface. The smaller contact potential difference of the ZTO facilitates the extraction of charge carriers and promotes carrier transport. The better p-n junction quality helps to improve the open-circuit voltage (VOC ) and fill factor (FF). Meanwhile, the wider bandgap of ZTO assists to transfer more photons to the CZTSSe absorber, and more photocarriers are generated thus improving short-circuit current density (Jsc). Ultimately, Ag-CZTSSe/ZTO device with 10 nm thick ZTO layer and 5:1 (Zn:Sn) ratio, Sn/(Sn + Zn): 0.28 deliver a superior power conversion efficiency (PCE) of 11.8%. As far as it is known that 11.8% is the highest efficiency among Cd-free kesterite thin film solar cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。