Long non-coding RNA TPT1-AS1 sensitizes breast cancer cell to paclitaxel and inhibits cell proliferation by miR-3156-5p/caspase 2 axis

长链非编码RNA TPT1-AS1通过miR-3156-5p/caspase 2轴增强乳腺癌细胞对紫杉醇的敏感性并抑制细胞增殖

阅读:5
作者:Yuan Huang #, Yabing Zheng #, Xiying Shao, Lei Shi, Guangliang Li, Ping Huang

Abstract

Long non-coding RNAs (lncRNAs) are key modulators during cancer progression. Application of using lncRNA expression to evaluate patient prognosis and sensitivity to treatment is highly anticipated, yet the expression and mechanism of many lncRNAs remain unknown. Herein, we projected for the investigation of TPT1-AS1 function in breast cancer. TPT1-AS1 was assessed by bioinformatic analysis of publicly available datasets and quantitative real-time PCR (qRT-PCR). Cell sensitivity to paclitaxel and cell proliferation was measured by flow cytometry and CCK-8. Interaction among TPT1-AS1, microRNA (miRNA, miR)-3156-5p and Caspase 2 (CASP2) was studied by bioinformatic analysis, qRT-PCR, western blot as well as dual luciferase reporter assay. Herein, TPT1-AS1 was significantly diminished in breast cancer from publicly available datasets and our collected samples. In breast cancer cells, TPT1-AS1 overexpression repressed cell proliferation and sensitized breast cancer cells to paclitaxel. RegRNA 2.0 predicted a potential interaction between TPT1-AS1 and miR-3156-5p which was confirmed by qRT-PCR as well as dual luciferase reporter assay. CASP2, a proapoptotic gene, was corroborated to be targeted by miR-3156-5p. Meanwhile, TPT1-AS1 upregulated CASP2 in breast cancer cells, and its biological function was reversed by CASP2 knockdown. Collectively, TPT1-AS1 diminished cell proliferation and sensitized cells to chemotherapy by sponging miR-3156-5p and upregulating CASP2, acting as a biomarker for patients with breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。