Mutations in HID1 Cause Syndromic Infantile Encephalopathy and Hypopituitarism

HID1 基因突变导致综合征性婴儿脑病和垂体功能低下

阅读:4
作者:Anne Schänzer #, Melanie T Achleitner #, Dietrich Trümbach, Laurence Hubert, Arnold Munnich, Barbara Ahlemeyer, Maha M AlAbdulrahim, Philipp A Greif, Sebastian Vosberg, Blake Hummer, René G Feichtinger, Johannes A Mayr, Saskia B Wortmann, Heidi Aichner, Sabine Rudnik-Schöneborn, Anna Ruiz, Elisabeth

Methods

Whole exome sequencing was performed in seven individuals of six unrelated families with these features. Postmortem histopathological and HID1 expression analysis of brain tissue and pituitary gland were conducted in one patient. Functional consequences of the homozygous HID1 variant p.R433W were investigated by Seahorse XF Assay in fibroblasts of two patients.

Objective

Precursors of peptide hormones undergo posttranslational modifications within the trans-Golgi network (TGN). Dysfunction of proteins involved at different steps of this process cause several complex syndromes affecting the central nervous system (CNS). We aimed to clarify the genetic cause in a group of patients characterized by hypopituitarism in combination with brain atrophy, thin corpus callosum, severe developmental delay, visual impairment, and epilepsy.

Results

Bi-allelic variants in the gene HID1 domain-containing protein 1 (HID1) were identified in all patients. Postmortem examination confirmed cerebral atrophy with enlarged lateral ventricles. Markedly reduced expression of pituitary hormones was found in pituitary gland tissue. Colocalization of HID1 protein with the TGN was not altered in fibroblasts of patients compared to controls, while the extracellular acidification rate upon stimulation with potassium chloride was significantly reduced in patient fibroblasts compared to controls. Interpretation: Our findings indicate that mutations in HID1 cause an early infantile encephalopathy with hypopituitarism as the leading presentation, and expand the list of syndromic CNS diseases caused by interference of TGN function. ANN NEUROL 2021;90:149-164.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。