CXCL12 induces migration of oligodendrocyte precursor cells through the CXCR4‑activated MEK/ERK and PI3K/AKT pathways

CXCL12 通过 CXCR4 激活的 MEK/ERK 和 PI3K/AKT 通路诱导少突胶质细胞前体细胞迁移

阅读:5
作者:Yongyang Tian, Hong Yin, Xi Deng, Beichuan Tang, Xianjun Ren, Tao Jiang

Abstract

Demyelination is a nervous system disease in which the myelin sheaths of neurons are damaged due to inflammatory reactions, inherited abnormalities or trauma. This damage impairs the conduction of signals in the affected nerves, which in turn causes deficiencies in sensation, movement and cognition. Oligodendrocyte precursor cells (OPCs) are able to induce remyelination. However, the remyelination is suboptimal due to the limited migration of OPCs. In the present study, neonatal OPCs were isolated from rats for the investigation of the role of C‑X‑C motif chemokine ligand 12 (CXCL12), an important chemokine, in mediating the migration ability of OPCs. The present results demonstrated that CXCL12 stimulation markedly promoted the migration of OPCs and activated the dual specificity mitogen‑activated protein kinase kinase 1 (MEK)/extracellular signal‑regulated kinase (ERK) and phosphoinositide 3‑kinase (PI3K)/RAC‑α serine/threonine‑protein kinase (AKT) pathways. Knockdown of C‑X‑C motif chemokine receptor 4 (CXCR4; a receptor of CXCL12) reversed the CXCL12‑induced migration of OPCs and blocked the MEK/ERK and PI3K/AKT pathways. In addition, specific inhibitors of the MEK/ERK and PI3K/AKT pathways significantly reduced the migration of OPCs. Based on these findings, it was concluded that CXCL12 may induce the migration of OPCs through the CXCR4‑activated MEK/ERK and PI3K/AKT pathways. The results of the present study support the manipulation of CXCL12‑mediated OPC migration to improve remyelination.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。