Ubiquibodies, synthetic E3 ubiquitin ligases endowed with unnatural substrate specificity for targeted protein silencing

泛素体是合成的 E3 泛素连接酶,具有非天然底物特异性,可用于靶向蛋白质沉默

阅读:4
作者:Alyse D Portnoff, Erin A Stephens, Jeffrey D Varner, Matthew P DeLisa

Abstract

The ubiquitin-proteasome pathway (UPP) is the main route of protein degradation in eukaryotic cells and is a common mechanism through which numerous cellular pathways are regulated. To date, several reverse genetics techniques have been reported that harness the power of the UPP for selectively reducing the levels of otherwise stable proteins. However, each of these approaches has been narrowly developed for a single substrate and cannot be easily extended to other protein substrates of interest. To address this shortcoming, we created a generalizable protein knock-out method by engineering protein chimeras called "ubiquibodies" that combine the activity of E3 ubiquitin ligases with designer binding proteins to steer virtually any protein to the UPP for degradation. Specifically, we reprogrammed the substrate specificity of a modular human E3 ubiquitin ligase called CHIP (carboxyl terminus of Hsc70-interacting protein) by replacing its natural substrate-binding domain with a single-chain Fv (scFv) intrabody or a fibronectin type III domain monobody that target their respective antigens with high specificity and affinity. Engineered ubiquibodies reliably transferred ubiquitin to surface exposed lysines on target proteins and even catalyzed the formation of biologically relevant polyubiquitin chains. Following ectopic expression of ubiquibodies in mammalian cells, specific and systematic depletion of desired target proteins was achieved, whereas the levels of a natural substrate of CHIP were unaffected. Taken together, engineered ubiquibodies offer a simple, reproducible, and customizable means for directly removing specific cellular proteins through accelerated proteolysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。