Thymocyte apoptosis drives the intrathymic generation of regulatory T cells

胸腺细胞凋亡促使胸腺内产生调节性 T 细胞

阅读:4
作者:Joanne E Konkel, Wenwen Jin, Brittany Abbatiello, John R Grainger, WanJun Chen

Abstract

Maintenance of immune tolerance critically depends upon regulatory T cells that express the transcription factor forkhead box P3 (Foxp3). These CD4(+) T cells can be generated in the thymus, termed thymus-derived regulatory T cells (tTregs), but their developmental pathway remains incompletely understood. tTreg development has been shown to be delayed compared with that of CD4(+) single positive (SP) thymocytes, with tTregs being detected only in neonatal thymi by day 3 after birth. Here, we outline the reasons for this delayed emergence of Foxp3(+) tTregs and demonstrate that thymocyte apoptosis is intrinsically tied to tTreg development. We show that thymic apoptosis leads to the production of TGFβ intrathymically from thymic macrophages, dendritic cells, and epithelial cells. This TGFβ then induces foxp3 expression and drives tTreg generation. Thymocyte apoptosis has previously been shown to accelerate after birth, which drives increases in TGFβ in the neonatal thymus. We highlight a paucity of TGFβ in the neonatal thymus, accounting for the delayed development of tTregs compared with CD4(+) SP thymocytes. Importantly, we show that enhanced levels of apoptosis in the thymus result in an augmented tTreg population and, moreover, that decreasing thymic apoptosis results in reduced tTregs. In addition to this, we also show that T-cell receptor (TCR) signals of different affinity were all capable of driving tTreg development; however, to achieve this TGFβ signals must also be received concomitant with the TCR signal. Collectively, our results indicate that thymic apoptosis is a key event in tTreg generation and reveal a previously unrecognized apoptosis-TGFβ-Foxp3 axis that mediates the development of tTregs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。