Neurohormonal activation induces intracellular iron deficiency and mitochondrial dysfunction in cardiac cells

神经激素激活导致心脏细胞内铁缺乏和线粒体功能障碍

阅读:4
作者:M Tajes, C Díez-López, C Enjuanes, P Moliner, J L Ferreiro, A Garay, S Jiménez-Marrero, S Yun, S G Sosa, L Alcoberro, J González-Costello, E García-Romero, L Yañez-Bisbe, B Benito, J Comín-Colet

Background

Iron deficiency (ID) is common in patients with heart failure (HF) and is associated with poor outcomes, yet its role in the pathophysiology of HF is not well-defined. We sought to determine the consequences of HF neurohormonal activation in iron homeostasis and mitochondrial function in cardiac cells.

Conclusions

HF characteristic neurohormonal activation induced changes in the regulation of key molecules involved in iron homeostasis, reduced intracellular iron levels and impaired mitochondrial function. The current results suggest that iron could be involved in the pathophysiology of HF.

Methods

HF was induced in C57BL/6 mice by using isoproterenol osmotic pumps and embryonic rat heart-derived H9c2 cells were subsequently challenged with Angiotensin II and/or Norepinephrine. The expression of several genes and proteins related to intracellular iron metabolism were assessed by Real time-PCR and immunoblotting, respectively. The intracellular iron levels were also determined. Mitochondrial function was analyzed by studying the mitochondrial membrane potential, the accumulation of radical oxygen species (ROS) and the adenosine triphosphate (ATP) production.

Results

Hearts from isoproterenol-stimulated mice showed a decreased in both mRNA and protein levels of iron regulatory proteins, transferrin receptor 1, ferroportin 1 and hepcidin compared to control mice. Furthermore, mitoferrin 2 and mitochondrial ferritin were also downregulated in the hearts from HF mice. Similar data regarding these key iron regulatory molecules were found in the H9c2 cells challenged with neurohormonal stimuli. Accordingly, a depletion of intracellular iron levels was found in the stimulated cells compared to non-stimulated cells, as well as in the hearts from the isoproterenol-induced HF mice. Finally, neurohormonal activation impaired mitochondrial function as indicated by the accumulation of ROS, the impaired mitochondrial membrane potential and the decrease in the ATP levels in the cardiac cells. Conclusions: HF characteristic neurohormonal activation induced changes in the regulation of key molecules involved in iron homeostasis, reduced intracellular iron levels and impaired mitochondrial function. The current results suggest that iron could be involved in the pathophysiology of HF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。