Mitochondrial phosphatidylethanolamine synthesis affects mitochondrial energy metabolism and quiescence entry through attenuation of Snf1/AMPK signaling in yeast

线粒体磷脂酰乙醇胺合成通过减弱酵母中的 Snf1/AMPK 信号影响线粒体能量代谢和静止期进入

阅读:7
作者:Non Miyata, Takanori Ito, Miyu Nakashima, Satoru Fujii, Osamu Kuge

Abstract

The Ups2-Mdm35 complex mediates intramitochondrial phosphatidylserine (PS) transport to facilitate mitochondrial phosphatidylethanolamine (PE) synthesis. In the present study, we found that ups2∆ yeast showed increased mitochondrial ATP production and enhanced quiescence (G0) entry in the post-diauxic shift phase. Transcriptomic and biochemical analyses revealed that the depletion of Ups2 leads to overactivation of the yeast AMPK homolog Snf1. Inactivation of Snf1 by depletion of an Snf1-activating kinase, Sak1 canceled the changes in mitochondrial ATP production and quiescence entry observed in ups2∆ cells. Furthermore, among the factors regulated by Snf1, upregulation of pyruvate carboxylase, Pyc1 and downregulation of acetyl-CoA carboxylase, Acc1, respectively, were sufficient to increase mitochondrial ATP production and quiescence entry. These results suggested that a normal PE synthesis mediated by Ups2-Mdm35 complex attenuates Snf1/AMPK activity, and that Snf1-mediated regulation of carbon metabolisms has great impacts on mitochondrial energy metabolism and quiescence entry. We also found that depletion of Ups2 together with the cell-cycle regulators Whi5 and Whi7, functional orthologs of the Rb1 tumor suppressor, caused a synthetic growth defect in yeast. Similarly, knockdown of PRELID3b, the human homolog of Ups2, decreased the viability of Rb1-deficient breast cancer cells, suggesting that PRELID3b is a potential target for cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。