β-Arrestin 2 Regulates Inflammatory Responses against Mycobacterium tuberculosis Infection through ERK1/2 Signaling

β-Arrestin 2 通过 ERK1/2 信号传导调节针对结核分枝杆菌感染的炎症反应

阅读:8
作者:Qian Wen, Yanfen Li, Zhenyu Han, Honglin Liu, Shimeng Zhang, Yaoxin Chen, Jianchun He, Xialin Du, Yuling Fu, Lijie Zhang, Zelin Zhang, Yulan Huang, Xinying Zhou, Chaoying Zhou, Shengfeng Hu, Li Ma

Abstract

Mycobacterium tuberculosis, the pathogen that causes tuberculosis, exhibits complex host-pathogen interactions. Pattern recognition receptors and their downstream signaling pathways play crucial roles in determining the outcome of infection. In particular, the scaffold protein β-arrestin 2 mediates downstream signaling of G protein-coupled receptors. However, the role of β-arrestin 2 in conferring immunity against M. tuberculosis has not yet been explored. We found that β-arrestin 2 was upregulated in the lesioned regions of lung tissues in patients with tuberculosis. M. tuberculosis infection upregulated β-arrestin 2 expression in human macrophages, and silencing of β-arrestin 2 significantly enhanced bactericidal activity by enhancing the expression of proinflammatory cytokines such as TNF-α. β-Arrestin 2 was shown to inhibit the activation of the TLR2/ERK1/2 pathway and its transcriptional regulation activity upon M. tuberculosis infection. Furthermore, β-arrestin 2 transcriptionally regulates TNF-α by binding to CREB1. These observations revealed that the upregulation of β-arrestin 2 is critical for M. tuberculosis to escape immune surveillance through an unknown mechanism. Our research offers a novel interference modality to enhance the immune response against tuberculosis by targeting β-arrestin 2 to modulate the TLR2-β-arrestin 2-ERK1/2-CREB1-TNF-α regulatory axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。