Retrotransposition facilitated the establishment of a primary plastid in the thecate amoeba Paulinella

逆转录转座促进了产卵变形虫 Paulinella 中原代质体的建立

阅读:4
作者:Victoria Calatrava, Timothy G Stephens, Arwa Gabr, Devaki Bhaya, Debashish Bhattacharya, Arthur R Grossman

Abstract

The evolution of eukaryotic life was predicated on the development of organelles such as mitochondria and plastids. During this complex process of organellogenesis, the host cell and the engulfed prokaryote became genetically codependent, with the integration of genes from the endosymbiont into the host nuclear genome and subsequent gene loss from the endosymbiont. This process required that horizontally transferred genes become active and properly regulated despite inherent differences in genetic features between donor (endosymbiont) and recipient (host). Although this genetic reorganization is considered critical for early stages of organellogenesis, we have little knowledge about the mechanisms governing this process. The photosynthetic amoeba Paulinella micropora offers a unique opportunity to study early evolutionary events associated with organellogenesis and primary endosymbiosis. This amoeba harbors a “chromatophore,” a nascent photosynthetic organelle derived from a relatively recent cyanobacterial association (∼120 million years ago) that is independent of the evolution of primary plastids in plants (initiated ∼1.5 billion years ago). Analysis of the genome and transcriptome of Paulinella revealed that retrotransposition of endosymbiont-derived nuclear genes was critical for their domestication in the host. These retrocopied genes involved in photoprotection in cyanobacteria became expanded gene families and were “rewired,” acquiring light-responsive regulatory elements that function in the host. The establishment of host control of endosymbiont-derived genes likely enabled the cell to withstand photo-oxidative stress generated by oxygenic photosynthesis in the nascent organelle. These results provide insights into the genetic mechanisms and evolutionary pressures that facilitated the metabolic integration of the host–endosymbiont association and sustained the evolution of a photosynthetic organelle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。