BdGT43B2 functions in xylan biosynthesis and is essential for seedling survival in Brachypodium distachyon

BdGT43B2 在木聚糖生物合成中发挥作用,对二穗短柄草幼苗存活至关重要

阅读:4
作者:Deborah L Petrik, Theodora Tryfona, Paul Dupree, Charles T Anderson

Abstract

Xylan is the predominant hemicellulose in the primary cell walls of grasses, but its synthesis and interactions with other wall polysaccharides are complex and incompletely understood. To probe xylan biosynthesis, we generated CRISPR/Cas9 knockout and amiRNA knockdown lines of BdGT43B2, an ortholog of the wheat TaGT43-4 xylan synthase scaffolding protein in the IRX14 clade, in Brachypodium distachyon. Knockout of BdGT43B2 caused stunting and premature death in Brachypodium seedlings. Immunofluorescence labeling of xylans was greatly reduced in homozygous knockout BdGT43B2 mutants, whereas cellulose labeling was unchanged or slightly increased. Biochemical analysis showed reductions in digestible xylan in knockout mutant walls, and cell size was smaller in knockout leaves. BdGT43B2 knockdown plants appeared morphologically normal as adults, but showed slight reductions in seedling growth and small decreases in xylose content in isolated cell walls. Immunofluorescence labeling of xylan and cellulose staining was both reduced in BdGT43B2 knockdown plants. Together, these data indicate that BdGT43B2 functions in the synthesis of a form of xylan that is required for seedling growth and survival in Brachypodium distachyon.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。