NLRC4 inflammasome activation is NLRP3- and phosphorylation-independent during infection and does not protect from melanoma

NLRC4 炎症小体的激活在感染过程中不依赖于 NLRP3 和磷酸化,并且不能预防黑色素瘤

阅读:6
作者:Jeannette L Tenthorey, Roberto A Chavez, Thornton W Thompson, Katherine A Deets, Russell E Vance, Isabella Rauch

Abstract

The NAIP/NLRC4 inflammasome is a cytosolic sensor of bacteria that activates caspase-1 and initiates potent immune responses. Structural, biochemical, and genetic data demonstrate that NAIP proteins are receptors for bacterial ligands, while NLRC4 is a downstream adaptor that multimerizes with NAIPs to form an inflammasome. NLRC4 has also been proposed to suppress tumor growth, though the underlying mechanism is unknown. Further, NLRC4 is phosphorylated on serine 533, which was suggested to be critical for its function. In the absence of S533 phosphorylation, it was proposed that another inflammasome protein, NLRP3, can induce NLRC4 activation. We generated a new Nlrc4-deficient mouse line and mice with S533D phosphomimetic or S533A nonphosphorylatable NLRC4. Using these models in vivo and in vitro, we fail to observe a requirement for phosphorylation in NLRC4 inflammasome function. Furthermore, we find no role for NLRP3 in NLRC4 function, or for NLRC4 in a model of melanoma. These results clarify our understanding of the mechanism and biological functions of NAIP/NLRC4 activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。