Torsin ATPase deficiency leads to defects in nuclear pore biogenesis and sequestration of MLF2

Torsin ATPase缺乏导致核孔生物合成缺陷和MLF2隔离

阅读:7
作者:Anthony J Rampello, Ethan Laudermilch, Nidhi Vishnoi, Sarah M Prophet, Lin Shao, Chenguang Zhao, C Patrick Lusk, Christian Schlieker

Abstract

Nuclear envelope herniations (blebs) containing FG-nucleoporins and ubiquitin are the phenotypic hallmark of Torsin ATPase manipulation. Both the dynamics of blebbing and the connection to nuclear pore biogenesis remain poorly understood. We employ a proteomics-based approach to identify myeloid leukemia factor 2 (MLF2) as a luminal component of the bleb. Using an MLF2-based live-cell imaging platform, we demonstrate that nuclear envelope blebbing occurs rapidly and synchronously immediately after nuclear envelope reformation during mitosis. Bleb formation is independent of ubiquitin conjugation within the bleb, but strictly dependent on POM121, a transmembrane nucleoporin essential for interphase nuclear pore biogenesis. Nup358, a late marker for interphase nuclear pore complex (NPC) biogenesis, is underrepresented relative to FG-nucleoporins in nuclear envelopes of Torsin-deficient cells. The kinetics of bleb formation, its dependence on POM121, and a reduction of mature NPCs in Torsin-deficient cells lead us to conclude that the hallmark phenotype of Torsin manipulation represents aberrant NPC intermediates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。