Transglutaminase 2 reprogramming of glucose metabolism in mammary epithelial cells via activation of inflammatory signaling pathways

转谷氨酰胺酶 2 通过激活炎症信号通路重新编程乳腺上皮细胞中的葡萄糖代谢

阅读:4
作者:Santosh Kumar, Taraka R Donti, Navneet Agnihotri, Kapil Mehta

Abstract

Aberrant glucose metabolism characterized by high levels of glycolysis, even in the presence of oxygen, is an important hallmark of cancer. This metabolic reprogramming referred to as the Warburg effect is essential to the survival of tumor cells and provides them with substrates required for biomass generation. Molecular mechanisms responsible for this shift in glucose metabolism remain elusive. As described herein, we found that aberrant expression of the proinflammatory protein transglutaminase 2 (TG2) is an important regulator of the Warburg effect in mammary epithelial cells. Mechanistically, TG2 regulated metabolic reprogramming by constitutively activating nuclear factor (NF)-κB, which binds to the hypoxia-inducible factor (HIF)-1α promoter and induces its expression even under normoxic conditions. TG2/NF-κB-induced increase in HIF-1α expression was associated with increased glucose uptake, increased lactate production and decreased oxygen consumption by mitochondria. Experimental suppression of TG2 attenuated HIF-1α expression and reversed downstream events in mammary epithelial cells. Moreover, downregulation of p65/RelA or HIF-1α expression in these cells restored normal glucose uptake, lactate production, mitochondrial respiration and glycolytic protein expression. Our results suggest that aberrant expression of TG2 is a master regulator of metabolic reprogramming and facilitates metabolic alterations in epithelial cells even under normoxic conditions. A TG2-induced shift in glucose metabolism helps breast cancer cells to survive under stressful conditions and promotes their metastatic competence.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。