The Arabidopsis mTERF-repeat MDA1 protein plays a dual function in transcription and stabilization of specific chloroplast transcripts within the psbE and ndhH operons

拟南芥 mTERF 重复 MDA1 蛋白在 psbE 和 ndhH 操纵子内特定叶绿体转录本的转录和稳定中起双重作用

阅读:7
作者:Louis-Valentin Méteignier, Rabea Ghandour, Karin Meierhoff, Aude Zimmerman, Johana Chicher, Nicolas Baumberger, Abdelmalek Alioua, Jörg Meurer, Reimo Zoschke, Kamel Hammani

Abstract

The mTERF gene family encodes for nucleic acid binding proteins that are predicted to regulate organellar gene expression in eukaryotes. Despite the implication of this gene family in plant development and response to abiotic stresses, a precise molecular function was assigned to only a handful number of its c. 30 members in plants. Using a reverse genetics approach in Arabidopsis thaliana and combining molecular and biochemical techniques, we revealed new functions for the chloroplast mTERF protein, MDA1. We demonstrated that MDA1 associates in vivo with components of the plastid-encoded RNA polymerase and transcriptional active chromosome complexes. MDA1 protein binds in vivo and in vitro with specificity to 27-bp DNA sequences near the 5'-end of psbE and ndhA chloroplast genes to stimulate their transcription, and additionally promotes the stabilization of the 5'-ends of processed psbE and ndhA messenger (m)RNAs. Finally, we provided evidence that MDA1 function in gene transcription likely coordinates RNA folding and the action of chloroplast RNA-binding proteins on mRNA stabilization. Our results provide examples for the unexpected implication of DNA binding proteins and gene transcription in the regulation of mRNA stability in chloroplasts, blurring the boundaries between DNA and RNA metabolism in this organelle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。