PEPseq quantifies transcriptome-wide changes in protein occupancy and reveals selective translational repression after translational stress

PEPseq 量化转录组范围内蛋白质占有率的变化,并揭示翻译应激后的选择性翻译抑制

阅读:6
作者:Jakob Trendel, Etienne Boileau, Marco Jochem, Christoph Dieterich, Jeroen Krijgsveld

Abstract

Post-transcriptional gene regulation is accomplished by the interplay of the transcriptome with RNA-binding proteins, which occurs in a dynamic manner in response to altered cellular conditions. Recording the combined occupancy of all proteins binding to the transcriptome offers the opportunity to interrogate if a particular treatment leads to any interaction changes, pointing to sites in RNA that undergo post-transcriptional regulation. Here, we establish a method to monitor protein occupancy in a transcriptome-wide fashion by RNA sequencing. To this end, peptide-enhanced pull-down for RNA sequencing (or PEPseq) uses metabolic RNA labelling with 4-thiouridine (4SU) for light-induced protein-RNA crosslinking, and N-hydroxysuccinimide (NHS) chemistry to isolate protein-crosslinked RNA fragments across all long RNA biotypes. We use PEPseq to investigate changes in protein occupancy during the onset of arsenite-induced translational stress in human cells and reveal an increase of protein interactions in the coding region of a distinct set of mRNAs, including mRNAs coding for the majority of cytosolic ribosomal proteins. We use quantitative proteomics to demonstrate that translation of these mRNAs remains repressed during the initial hours of recovery after arsenite stress. Thus, we present PEPseq as a discovery platform for the unbiased investigation of post-transcriptional regulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。